Monday, September 10, 2012

Apoptosis



------------------------------------------ Best Wishes: Dr.Ehab Aboueladab, Tel:01007834123 Email:ehab10f@gmail.com,ehababoueladab@yahoo.com ------------------------------------------

وظائف خالية

Diabetes Mellitus



Introduction
Diabetes mellitus is a syndrome with disordered metabolism and inappropriate hyperglycemia due to either a deficiency of insulin secretion or to a combination of insulin resistance and inadequate insulin secretion to compensate.
Several distinct types of DM exist and are caused by a complex interaction of genetics and environmental factors. Depending on the etiology of the DM, factors contributing to hyperglycemia include reduced insulin secretion, decreased glucose utilization, and increased glucose production. The metabolic dysregulation associated with DM causes secondary pathophysiologic changes in multiple organ systems that impose a tremendous burden on the individual with diabetes and on the health care system.
Classification
DM is classified on the basis of the pathogenic process that leads to hyperglycemia, as opposed to earlier criteria such as age of onset or type of therapy. The two broad categories of DM are designated type 1 and type 2 .Both types of diabetes are preceded by a phase of abnormal glucose homeostasis as the pathogenic processes progresses. Type 1 diabetes is the result of complete or near-total insulin deficiency. Type 2 DM is a heterogeneous group of disorders characterized by variable degrees of insulin resistance, impaired insulin secretion, and increased glucose production. Distinct genetic and metabolic defects in insulin action and/or secretion give rise to the common phenotype of hyperglycemia in type 2 DM and have important potential therapeutic implications. Type 2 DM is preceded by a period of abnormal glucose homeostasis classified as impaired fasting glucose (IFG) or impaired glucose tolerance (IGT).
Etiologic Classification of Diabetes Mellitus
I. Type 1 diabetes (β-cell destruction, usually leading to absolute insulin deficiency)
  A. Immune-mediated
  B. Idiopathic
II. Type 2 diabetes (may range from predominantly insulin resistance with relative insulin deficiency to a predominantly insulin secretory defect with insulin resistance)
A. Nonobese
B. Obese
III. Other specific types of diabetes
 A. Genetic defects of  cell function characterized by mutations in:
    1. Hepatocyte nuclear transcription factor (HNF) 4 α (MODY 1)-
    { MODY, maturity onset diabetes of the young}
    2. Glucokinase (MODY 2)
    3. HNF-1 α (MODY 3)
    4. Insulin promoter factor-1 (IPF-1; MODY 4)
    5. HNF-1β (MODY 5)
    6. NeuroD1 (MODY 6)
    7. Mitochondrial DNA
    8. Subunits of ATP-sensitive potassium channel
    9. Proinsulin or insulin conversion
 B. Genetic defects in insulin action
    1. Type A insulin resistance
    2. Leprechaunism
    3. Rabson-Mendenhall syndrome
    4. Lipodystrophy syndromes
C. Diseases of the exocrine pancreas—pancreatitis, pancreatectomy, neoplasia, cystic fibrosis, hemochromatosis, fibrocalculous pancreatopathy, mutations in carboxyl ester lipase
D. Endocrinopathies—Acromegaly, Cushing's syndrome, glucagonoma, pheochromocytoma, hyperthyroidism, somatostatinoma, aldosteronoma
E. Drug- or chemical-induced—Vacor, pentamidine, nicotinic acid, glucocorticoids, thyroid hormone, diazoxide, , β -adrenergic agonists, thiazides, phenytoin, α-interferon, protease inhibitors, clozapine
F. Infections—congenital rubella, cytomegalovirus, coxsackie
G. Uncommon forms of immune-mediated diabetes—"stiff-person" syndrome, anti-insulin receptor antibodies
H. Other genetic syndromes sometimes associated with diabetes—Down's syndrome, Klinefelter's syndrome, Turner's syndrome, Wolfram's syndrome, Friedreich's ataxia, Huntington's chorea, Laurence-Moon-Biedl syndrome, myotonic dystrophy, porphyria, Prader-Willi syndrome
IV. Gestational diabetes mellitus (GDM)
Source: Adapted from American Diabetes Association, 2007.
The terms insulin-dependent diabetes mellitus (IDDM) and noninsulin-dependent diabetes mellitus (NIDDM) are obsolete. Since many individuals with type 2 DM eventually require insulin treatment for control of glycemia.
Age is not a criterion in the classification system. Although type 1 DM most commonly develops before the age of 30, an autoimmune beta cell destructive process can develop at any age. It is estimated that between 5 and 10% of individuals who develop DM after age 30 have type 1 DM. Likewise, type 2 DM more typically develops with increasing age but is now being diagnosed more frequently in children and young adults, particularly in obese adolescents.

Etiology of Type 1 Diabetes
The global incidence of type 1 diabetes is increasing (approximately 3% each year).This form of diabetes is immune-mediated in over 90% of cases and idiopathic in less than 10%. The rate of pancreatic B cell destruction is quite variable, being rapid in some individuals and slow in others.
A) Immune-mediated type 1 diabetes mellitus
Approximately one-third of the disease susceptibility is due to genes and two-thirds to environmental factors.
Genes that are related to the HLA locus contribute about 40% of the genetic risk. About 95% of patients with type 1 diabetes possess either HLA-DR3 or HLA-DR4.The other important gene that contributes to about 10% of the genetic risk is found at the 5' polymorphic region of the insulin gene. This polymorphic region affects the expression of the insulin gene in the thymus and results in depletion of insulin-specific T lymphocytes. 16 other genetic regions of the human genome have been identified as being important to pathogenesis but less is known about them.
Children of diabetic parents are at increased lifetime risk for developing type 1 diabetes. A child whose mother has type 1 diabetes has a 3% risk of developing the disease and a 6% risk if the child's father has it. The risk in siblings is related to the number of HLA haplotypes that the sibling shares with the diabetic parent. If one haplotype is shared, the risk is 6% and if two haplotypes are shared, the risk increases to 12–25%. The highest risk is for identical twins, where the concordance rate is 25–50%.
Some patients with a milder expression of type 1 diabetes mellitus initially retain enough B cell function to avoid ketosis, but as their B cell mass diminishes later in life, dependence on insulin therapy develops. Up to 15% of "type 2" diabetic patients may actually have this mild form of type 1 diabetes (latent autoimmune diabetes of adulthood; LADA).
 Environment- Which environmental factor is responsible for the increased risk is not known. There have been a number of different hypotheses including infections with certain viruses (rubella, Coxsackie B4) and consumption of cow's milk. None of these factors has so far been confirmed as the culprit.
Types of Auto antibodies (Immunological Markers)
1. Islet cell cytoplasmic antibodies: The primary antibodies found in 90% of type 1 diabetics are against islet cell cytoplasmic proteins (termed ICCA, islet cell cytoplasmic antibodies). In non-diabetics ICCA frequency is only 0.5%–4%. The presence of ICCA is a highly accurate predictor of future development of IDDM, the titer of the ICCA tends to decline over time.
2. Islet cell surface antibodies: Auto antibodies directed against cell-surface antigens (ICSA) have also been described in as many as 80% of type 1 diabetics. Similar to ICCA, the titer of ICSA declines over time. Some patients with type 2 diabetes have been identified that are ICSA positive.
3. Specific antigenic targets of islet cells: Antibodies to Glutamic acid decarboxylase (GAD) have been identified in over 80% of patients newly diagnosed with IDDM. Like ICCA, anti-GAD antibodies decline over time in type 1 diabetics. The presence of anti-GAD antibodies is a strong predictor of the future development of IDDM in high-risk populations. Anti-insulin antibodies (IAA) have been identified in IDDM patients and in relatives at risk to develop IDDM. These IAA are detectable even before the onset of insulin therapy in type 1 diabetics. IAA are detectable in around 40% of young children with IDDM.
B) Idiopathic type 1 diabetes mellitus
Less than 10% of subjects have no evidence of pancreatic B cell autoimmunity to explain their insulinopenia and ketoacidosis. This subgroup has been classified as "idiopathic type 1 diabetes" and designated as "type 1B." Although only a minority of patients with type 1 diabetes fall into this group, most of these are of Asian or African origin. 

------------------------------------------ Best Wishes: Dr.Ehab Aboueladab, Tel:01007834123 Email:ehab10f@gmail.com,ehababoueladab@yahoo.com ------------------------------------------

Sunday, September 9, 2012

carbohydrate metabolism - ميتابولزم السكريات-الكربوهيدرات


 In carbohydrate metabolism we will study, the types of carbohydrate, how they are digested and absorbed, then we will the cycles of carbohydrate oxidation which generate the energy required for life…. these cycles are:
  1. Glycolysis  = Glucose oxidation (i.e. break down of glucose to get energy).
  2. Frucose metabolism.
  3. Galactose metabolism.
  4. Gluconeogensis = formation of Glucose form non-carbohydrate sources.
  5. Kerbs cycle.
  6. Glycogen Metabolism including breaking and formation of glycogen.
  7. Pentose phosphate pathway = which generate NADH
فالميتابولزم بتاعة الكربوهيدرات احنا هنعرف انواع الكربوهيدرات وطريقة هضمها وامتصاصها وبعد كدة هنعرف السيكلز بتاعة اكسدة الكربوهيدرات للحصول عالطاقة وهم:
1-     Glycolysis وهى اكسدة الجلوكوز
2-     Fructose metabolism
3-     Galactose metabolism
4-     Gluconeogensis وهى تخليق الجلوكوز من مركبات مش سكرية
5-     Kerbs cycle
6-     Glycogen metabolism وتشمل تكسير وتكوين الجليكوجين
7-     Pentose phosphate pathway ودى السيكل البتعمل NADPH وهنعرف ليه وفايدتها ايه قدام
وبعد كدة هنتكلم عن الdiabetes mellitus.
───────────────────────────────────────────────────────────────────────

A) Types of carbohydrates:

1. Monosaccharides
-   They are those carbohydrates that cannot be hydrolyzed into simpler carbohydrates.
-   They may be classified as trioses (3-carbon sugar), tetroses (4-carbon sugar), pentoses (5-carbon sugar), hexoses (6-carbon sugar), or heptoses (7-carbon sugar).
2. Disaccharides:are condensation products of two monosaccharide units. Examples are maltose and sucrose.
3. Oligosaccharidesare condensation products of 2 to 10 monosaccharides; Example: maltotriose
4. Polysaccharidesare condensation products of more than ten monosaccharide units; examples are the starches and dextrins, which may be linear or branched polymers.
 دى سهلة مشمحتاجة شرح ولا توضيح ولو مشواضحة اكتب كومنت فاخر الموضوع وهنوضحها
───────────────────────────────────────────────────────────────────────

B)   Carbohydrate digestion:

After eating, digestion begins as follow:
1) In the mouth, salivary amylase, hydrolyze starch partially into a mixture of dextrins and maltose.
2) In the stomach, salivary amylase continues hydrolysis of starch only for few minutes then stop because the pH becomes acidic due to the presence of the HCl in stomach and this is unfavourable condition for the amylase to work.
3) In the intestine, pancreatic amylase, completes the digestion of starch into maltose with little isomaltose and maltotriose which are then hydrolyzed in the intestine into glucose. Fructose and Galactose.
بعد الاكل يتم الهضم كالاتى:
1) فى الفم، انزيم الامايليز (Salviary amylase) يتم تكسير النشا جزئيا الى dextrins وMaltose.
 2) فى المعدة، الSalivary amylase بيكمل شغله يعنى بيستمر فى تكسير النشا ولكن لدقايق قليلة وبعد كدة يتوقف عشان الوسط الحامضى اللى فالمعدة مشمناسب ليه.
3) فى الامعاء، الامايليز بتاع البنكرياس (Pancreatic amylase) بيكمل تكسير النشا الى maltose،وIsomaltose وMaltotriose واللى فالنهاية بيتكسروا فالامعاء الى Glucose وFructose وGalactose. ذى ما هنشوف فالمعادلات اللى جاية
Starch + H2O   ===== Amylase ====>  Dixterns + Maltose
Dixterns + H2O  ===== Amylase ====> Maltose + Isomaltose + Maltotriose
Maltotriose + H2O ===== Maltase====>Maltose + Glucose
 Maltose + H2O  ======== Maltase====> Glucose + Glucose
Isomaltose + H2O===== Isomaltase====> Glucose + Glucose
Sucrose + H2O========== Sucrase=====>Glucose + Fructose 
Lactose + H2O ========Lactose=======>Glucose + Galactose
4. Sucrose and the enzymes that complete hydrolysis into Monosaccharides in the mucus layer of the intestine
5. The net result of carbohydrate hydrolyses is glucose, fructose and Galactose
4) السكاروز (sucrose) والانزيمات اللى بتكمل اكسدة السكريات الاحادية اللى اسمها Monosaccharides بتحصل فى عضلات الامعاء
 5) نهاية تكسير الكاربوهيدرات بتكون glucose, fructose and Galactose
───────────────────────────────────────────────────────────────────────

C) Absorption:

دلوقتى احنا عرفنا من فوق اذاى هضم الكربوهيدرات بيحصل ودلوقتى هنعرف الامتصاص ودخول الجلوكوز فى  الخلايا بيحصل اذاى.
- The polysaccharides and oligosaccharides are not absorbable so, they must be converted to Monosaccharides.
- Monosaccharides are principally absorbed from the duodenum then pass into the blood through the hepatic portal vein to the liver where:
  • Part of these monosaccharides  is stored as glycogen and part is oxidised through glycolysis to obtain energy
  • Part is oxidised through the pentose phosphate pathway to regenerate NADPH which, together with glucose itself, is used in synthesis of such molecules as amino acids, nucleotides, fats and cholesterol
  • Part is oxidised to produce energy (ATP) which is used in the anabolism processes.
- بعد ما هضم الكاربوهيدات المعقدة الى سكريات احادية واللى هما الجلوكوز والفركتوز والجالاكتوز، بيتم امتصاص السكريات الاحادية فى الاثنى عشر وبعد كدة بيمشى فالدم ويوصول للكبد عن طريق الوريد الكبدى البابى وفالكبد بيحصله الاتى:
       ===> جزء من السكريات الاحادية بيتخزن فى صورة جليكوجين وجزء بيتأكسد فى الGlycolsis عشان ناخد طاقة منه.
      ===> جزء تانى بيتاكسد بس عن طريق الpentose phosphate pathway عشان ناخد منه NADPH اللى بيستخدم مع الجلوكوز لتكوين جزيئات معينة من الاحماض الامينية ونيوكليوتايد اللى بتستخدم فتخليق الDNA ودهون وكوليسترول
===> جزء تانى بيتاكسد عشان نعمل ATP وده طريق لتخزين الطاقة والطاقة المخزونة دى بنستخدمها فى بناء خلايا جديدة او تكوين اى جزيئات او مواد ضرورية فالجسم
Before we know the mechanism by which the glucose is absorbed into the cells we must know the composition of the cell membrane through which the glucose pass.

this part will help any any one who don’t study biology or cell before to be able to understand biochemistry

قبل ما نعرف الطريقة اللى بيدخل بيها الجلوكوز فى الخلايا لازم نعرف الاول تركيب غشاء الخلية وده جزء مهم للناس اللى مدرستش بيولوجى ولا تركيب الخلايا قبل كدة يعنى ده عشان

Composition of the cell membrane:

==>  As from the previous picture, the cell membrane is composed of 2 layers each of them consists of a layer of phospholipids.
==>  Each phospholipid molecule consists of a polar hydrophilic head and a non-polar called hydrophobic tail.
من الشكل السابق، شايفين ان غشاء الخلية بيتكون من طبقتين كل واحدة فيها بتتكون من طبقة من الphospholipids وكل جزئ من الphospholipids بيتكون من راس او جزء محب للماء (hydrophilic) وطبعا كلمة محب للماء دى معناها انها مشحونة وبعد كدة بيتكون من سلسلة كربونية طبعا غير مشحونة لان الكاربون بيكون غير مشحون وبنسمى السلسة دى الزيل الغيرمحب للماء (hydrophobic tail)  …. وده موضح فالصورة اللى جنب الكلام
==> How the bilayer membrane is formed: And as we knowthe extracellular and intercellular fluid are polar, therefore the polar heads are arranged towards the polar fluids and the non-polar tails arranged toward themselves  inward the membrane where there are a hydrophobic interaction between them and thus forming a phospholipids bilayer membrane
==> And across the membrane there are transport proteins and receptor proteins
هنا بقى بيقول ايه …. اذاى بيتكون غشاء الخلية من طبقتين يعنى ممكن نقولها بطريقة تانية … اذاى الطبقتين دول ماسكين فبعض بالطريقة دى من غير ماينفصلو عن بعض:- طبعا ذى ما احنا عارفين ان السائل اللى خارج الخلية واللى داخل الخلية هما ال2 polar يعنى مشحونين وده يعمل ايه …. يخلى الراس المشحونة او الجزء المشحون فى جزيئات الphospholidis هى اللى بتحب تعوم فالسائل المشحون وطبعا الزيل اللى مشمشحون مشهيقدر يعوم فالسائل المشحون فيعمل ايه .. الديول اللى مشمشحونة يحضونو بعض ويخبو بعض من السائل المشحون طيب هيخبو بعض اذاى؟ …. هيعمل الطبقتين بالطريقة اللى شايفانها فالصورة يعنى دى طريقة لانهم يهربو من السائل المشحون بس كدة …. وفيه كمان بروتينات ناقلة ومستقبلات بروتينية (receptors) ودى هنعرف وظيفتها فالحاجات اللى جاية
==> Function of the cell membrane:-
  • Protection of cells.
  • On the other hand, it represents a barrier which prevents entry of some molecules into cells such as polar molecules but it uses other mechanism by which the molecules enter the cells such as Na-K pump through which ions are transported into the cell.
    ايه هى وظيقة غشاء الخلية ده:
    - حماية الخلية من الوسط المحيط بيها
    - وعلى ناحية تانية … هو عبارة عن حائل او حاجز بيمنع دخول بعض الجزيئات فى الخلية ذى الجزيئات الpolar اللى عليها شحنة ولكن بيستخدم طرق تانية عشان يدخل الجزيئات دى بكميات معينة على حسب ماتحتاج الخلية ذى مثلا ممكن يدخلها عن طريق حاجة اسمها Na-K pump اللى عن طريقها بيدخل الايونات فى الخلية

In case of glucose:

Any polar molecules can’t pass through the inner non-polar layer of cell membrane so, how glucose enter the cell through the cell membrane while it is polar?
===> The answer is that glucose has 2 mechanism to enter the cells:
بالنسبة للجلوكوز:
طبعا احنا عارفين ان الجزيئات المشحونة متتفقش ابدا مع الجزيئات الغير مشحونة …. طيب الغشاء بتاع الخلية من جوة متكون من الديول الغير مشحونة يبقى اذاى الجلوكوز المشحون هيعدى منهم … الاجابة ان فى طرقتين تعالو نشوفهم.

1) The passive diffusion or transport:

===> DEF: it transport of biochemical and other atomic or molecular substance across the cell membrane into the cell from higher concentration region to a lower concentration region without any need for energy. (i.e. the substance enter the cell only if its concentration outside the cell is more than its concentration inside the cell.)
===> It depends on the concentration gradient.
===> It doesn’t need energy.
===> Depends on the permeability of the cell membrane.
===> Types:
  • Simple diffusion:in which the substance are transported from higher concentration to lower concentration region through the phospholipids bilayer without any need for energy and without using the transmembrane proteins (carriers/transporters/channels/pores).
  • Facilitated diffusion or passive-mediated-transport:in which the substance are transported from higher concentration to lower concentration region through the phospholipids bilayer using the transport proteins  and without any need for energy.
-          Fructose and pentose use this mechanism.
-          Glucose is transported by this mechanism into brain, kidney and liver.
1. الPassive diffusion or transport:
لو ترجمنا كلمة passive على اى قاموس هنلاقيها بعنى بليد او سلبى او غير فعال لكن هنا مشهنترجمها كدة لكن هنسميها السهل يعنى العنوان هيكون ترجمته النقل السهل …. طيب سهل اذاى …. عشان هو عبارة عن نقل الذرات او الجزيئات خلال غشاء الخلية الى داخل الخلية لما بيكون تركيز المواد دى خارج الخلية اعلى من داخل الخلية عشان كدة سموه سهل يعنى ذى ما نهر النيل بيتحرك من المكان العالى للمنخفض وطبعا ده مشمحتاج طاقة وبيعتمد اساساى على تركيز المواد لانها لازم تكون خارج الخلية اعلى من داخل الخلية
وليه نوعين
 ====> الاول ….. النوع البسيط (simple diffusion) …. وده مجرد انتقال المادة من تركيز عالى خارج الخلية الى تركير منخفض داخل الخلية خلال الphospholipid bilayer بدون استهلاك طاقة او حتى استخدام بروتينات ناقلة
====>التانى ….. النوع النقل اللى بيتم تسهليه (facilitated diffusion) …. وده مجرد انتقال من تركيز عالى خارج الخلية الى تركيرز منخفض داخل الخلية خلال الغشاء عادى وبدون استهلاك طاقة لكن بمساعدة بروتينات ناقلة يعنى فى وسيلة مساعدة او تسهيل لعملية النقل
الpassive transport ده مين بيستخدمه … الفركتوز والبنتوز (السكر الخماسى) والجلوكوز بيستخدمه برضو بس فى حالة دخوله خلايا المخ والكلية والكبد

2) Active diffusion or transport

===> DEF: it means transport of a substance from region of lower concentration to a region of higher concentration (i.e. against the concentration gradient) utilizing energy from ATP molecules and carrier proteins.
===> It doesn’t depend on the concentration gradient.
===> It needs energy.
===> This mechanism applied by the cell to accumulate high concentration of molecules that the cell needs such as ions, glucose and amino acids.
===>Doesn’t depend on the permeability of the cell membrane because this mechanism transports the substance through the transport proteins and carrier proteins.
===> It has 2 types:
  • Primary active transport: in which the cell uses chemical energy such as ATP.
  • Secondary active transport: in which the uses electrochemical gradient such as sodium and potassium dependent ATP bump
===> It is the mechanism by which glucose is transported from intestinal tract
النوع التانى الactive diffusion or transport:
كلمة active احنا عارفين ان معناها نشيط … طيب سموه كدة ليه …. عشان ده عبارة عن نقل المادة من تركيز منفخض خارج الخلية الى تركيز عالى داخل الخلية يعنى بينقل المادة فى عكس تدرج التركيز وده طبعا محتاج طاقة لانه عامل ذى واحد بيزق حاجة وعايز يدخلها فمكان مليان قوى واكيد هيزقها بالعافية يعنى متحاج طاقة وبياخد الطاقة دى من جزيئات الATP وطبعا الطريقة دى لا تعتمد على تركيز المادة لانه مشفارق معاه المادة تركيزها ايه لانه بينقلها بالطاقة
وفى حاجتين ممكن نستنتجهم لوحدنا وهما ايه …. الاولى …. ان الطريقة دى بتستخدمها الخلية لعمل تراكم من جزيئات معينة داخل الخلية عشان هى محتاجها بكيمات كبيرة وده ذى الجلوكوز لان الخلية علطول بتحرق الجلوكوز عشان تاخد طاقة …… والتانية ….. ان الطريقة دى لا تعتمد على مدى نفاذية الغشاء للمادة لانها بتنتقل خلال البروتينات الناقلة
وفى نوعين من الطريقة دى:
===> النوع الاولي …… وده فيه الخلية الطاقة اللى بتستخدمها فعمليه النقل بتاخدها من جزيئات الATP
===> النوع الثانوى …… وده بتسخدم الطاقة بتاعة الATP مع الNA-K Pump
───────────────────────────────────────────────────────────────────────

Glucose transportation into the cell by insulin action:

===> When the blood glucose level is high, the nervous system sends signals to the beta-cells of the pancreas to secrete insulin.
===> Then insulin binds to its receptors on the outside surface of the cell membrane causing conformational changes to the receptors (where the receptors are soft protein) leading to conformational changes to the cell membrane and opening of protein gates which called glucose transporter (GLUT) leading to entrance of glucose inside the cell.
===> Opening of these gates lead to activation or deactivation of some enzymes that responsible to glucose oxidation.
===> Insulin binding to the receptor is a reversible process because it will leave the receptor after delivering the message.
===> This process is regulated by the central nervous system.
===> Then after the glucose level returns normal; the insulin leave the receptor and no glucose will enter the cell
===> But in some cases the B-cells is highly activated secreting more insulin which make the glucose to enter the cell and  its level is lowered causinghypoglycaemia
===>The receptors of the insulin are specific for insulin and are distributed in all tissue with different concentration where the receptor concentration increases in the tissue:
  • Which utilize glucose as the main source of energy such as brain and cells of the nervous system, red blood cells, muscles,…..etc
  • At which the blood supply is low such as the peripheral tissues.
لما يعلى السكر فى الدم، الجهاز العصبى يرسل رسائل الى الB-cell فى البنكرياس عشان يفرز الانسولين
والانسولين بيروح على الخلية ويمسك ف الreceptor بتاعه وده يعمل تغير فشكل الreceptor عشان هو بروتين طرى يعنى soft وده بيعمل تغير فشكل الغشاء والتغير ده بيفتخ بوابات  بروتينية (protein gates) معينة على سطح الخلية بنسميها ناقلات الجلوكوز (glucose transporter) ودى بتسهل دخول الجلوكوز وكمان فتح البوابات دى بيعمل تنشيط او تثبيط لبعض الانزيمات البتعمل اكسدة للجلوكوز وبالتالى تبدا الglycolysis اللى هى أكسدة الجلوكوز وبعد كدة الانسولسن يسيب الreceptor لما مستوى السكر يقل ومفيش جلوكوز هيدخل تانى لكن فى بعض الحالات بتكون الB-cell نشطة وتفرز انسولين بتركيز عالى وبالتالى الجلوكوز هيدخل فالدم بالرغم انه قليل ويعمل Hypoglycaemia اللى هى نقص فى مستوى السكر فالدم.
تركيز الreceptor بيختلف على حسب احتياج الخلية للجلوكوز وكمان على حسب وصول الدم بمعنى ان الاعضاء المحتاجة جلوكوز كغذاء اساسى ذى المخ والاعصاب بيزيد تركيز الreceptor فيها والعكس صحيح طبعا وكمان الاماكن التى يقل فيها وصول الدم برضو ذى الاطراف يزيد فيها تركيز الreceptors دى
───────────────────────────────────────────────────────────────────────

Some Important Questions:

What is the difference between the receptors and enzymes?

 P.O.C
Receptor
Enzyme
Composition 
Protein
Protein
Active site
Present
Present
Function
Just delivering messages sent by the nervous system into the cell (just letter box)
Doesn’t catalyse any reaction
Catalyse reactions and doesn’t deliver any messages.
──────────────────────────────

Why glucose is stored in the liver and muscles as glycogen and not as it is (i.e. glucose)?

Because glycogen is solid polymer that is compacted and occupy a small size inside the cell which prevents cell membrane rupture by the pressure on the cell membrane.
While if the glucose is stored as glucose, it will take large size which then cause pressure on the cell membrane and then rupture of the cell membrane.
بالعربى الجليكوجين بيكون مضغوط وواخد حجم صغير فالخلية لكن الجلوكوز لما بيتراكم فوق بعضه حجمه بيكون كبير وممكن يضغط على غشاء الخيلو ويقطعه.
──────────────────────────────

What is the factor that determines the amount of glucose that enters the cell?

The amount of glucose after meal where the glucose must be maintained at the normal level and the excess must enter the cells
بالعربى انه لما السكر بيزيد فى الدم بعد الاكل الكمية الزيادة هى البتدخل فى الخلايا يعنى البيحدد كمية الكلوجوز الداخلة فى الخلايا هو كمية الجلوكوز الداخل مع الاكل بحيث ان الزيادة فى الدم عن التركيز الطبيعى هو اللى بيدخل فالخلايا حتى لو عندها سكر كتير وده طبعا بيستخدم الactive transport.
──────────────────────────────

Is the metabolism of fats can be used in formation of glycogen?

The answer is yes because the result of oxidation of fat is formation of glycerol which can enter the gluconeogensis process in which glucose is formed.
So, if glucose can be formed from fats thus glycogen can be form fats
هنا بيسال هل تكسير الدهون ممكن نون منه جليكوجين …. الاجابة ايوة ممكن … عشان من نواتج اكسدة الدهون هو الجليسرول وده بيدخل فى الدورة بتاعة الgluconeogensis اللى هى تكوين الجلوكوز من مواد غير سكريه او كاربوهيدراتيه وطالما نقدر نكون جلوكوز من الدهون يبقى اكيد نقدر نكون جليكوجين من الدهون
───────────────────────────────────────────────────────────────────────

D)  Structure of glucose:

===> Glucose is aldose sugar and has 2 isomers: (D-glucose and L-Glucose)
It has 2 chiral carbon atoms (i.e. the carbon atom that carry 4 different groups); the carbons number 2 and 3
هنا عايز يعرفنا ان الجلوكوز ليه شكلين فالفراغ …. الشكل L والشكل D وطبعا ده عشان جزء الجلوكوز فيه كاربونة كايرال يعنى ايه….. يعنى كاربونة عليها 4 مجموعات مختلفة
The (L)-glucose is the isomer that is utilized by the cells. WHY?
Because the amino acid molecules which forms the enzyme present in the L- form which make the enzymes in the L- form, therefore the L-glucose is the more suitable substrate which is the more matching with the binding groups in the active site than the D-glucose
Proteins molecules also have L- and D- forms because all has a chiral carbon except glycine which doesn’t carry 4 different groups.
بالعربى كدة ان البروتينات اللى بتكون الانزيمات موجودة فى ال L-form وبالتالى الانزيمات الموجودة هتكون فال L-form وبالتالى الL-glucose هيكون هو الsubstrate المناسب
────────────────────────────────

How the scientists classified the isomers into L- and D- forms?

They use the glyceraldehyde as a standard as follow:
-          Each isomer has a chiral carbon (i.e. the carbons atom which carries 4 different groups)
-          The isomer that has L- and D- forms are called enantiomers
هنا بيعرفنا اذاى العلماء قسمو المركبات من حيث شكلها الفراغى الى L-form والى D-form وبيقول انهم استخدمو الجليسرالدهيد كمركب قياسى يقيسو عليه باقى المركبات كالاتى:
====> كل شكل فراغى ليه كاربونة Chiral يعنى تحمل 4 مجموعات مختلة
====> والL-Form والD-form هما ال2 بنسميهم enantiomers اللى ترجمتها بالعربى المتبلورات المضادة يعنى كل واحد فيهم عكس التانى ذى كف ايدك لما تحطهم قدام عينك هما ال2 شبه بعض بس معاكسين لبعض بمعنى انك لما تحطهم قصاد بعض هتلاقى الابهام فايدك اليمين ناحية اليمين واللى فايدك الشمال  ناحية الشمال لكن مستحيل تلاقى ال2 فاتجاه اليمين او ال2 فاتجاه الشمال
────────────────────────────────

Differentiate between the following terms:

1.      Enantiomers:

Are 2 stereoisomers that are mirror images of each other that are “non-superposable” (not identical), much as one’s left and right hands are “the same” but opposite
الenantionmers دى مركبات متشابها فراغيا ولكن كل واحد منهم كانه صورة فالمراية من التانى لن لا يطبقو على بعض ذى ماقولنا فوق على كف الايد مينفعش تلاقى صوابع الابهام فايديك ال2 فاتجاهين مختلفين لكن مستحيل تلاقيهم فاتجاه واحد
2.     Epimers:
Epimers are diastereomers that differ in configuration of only one carbon atom and they are non-superposable, and non-mirror images of one another
The glucose molecules are non-mirror image to each other but aren’t identical because they differ in one carbon atom.
الepimer ده برضو متشابهات فراغية ولكن تختلف فى كاربونة واحدة وهما ال2 لا ينطبقو على بعض ومحدش فيهم كانه صورة فالمراية من التانى

3.    Anomers:

In carbohydrate chemistry, an anomer is a special type of epimer because it is a stereoisomer of a cyclic saccharide that differs only in its configuration at the hemiacetal or hemiketal carbon, also called the anomeric carbon
The cyclic structure of glucose has 2 anomers because the hydroxyl groups orientation differes on the hemiketal carbon atom.
الAnomers دى حالة خاصة من الepimer بمعنى انها مركبات متشابهة فراغيا وتختلف فكاربونة واحدة ومحدش فيهم صورة فالمراية للتانى ولكن بتحصل فالسكريات الخلقية وبيختلفو فالكاربونة شبيه الالدهيد او شبيهة الكيتون اللى بنسميهم بالانجليزى hemiacetal و hemiketal
والجلوكوز ليه anomer 2 عشان وضع الهيدروكسيل OH  بتاعة الى الhemiketal carbon بتختلف فالفراغ ذى ماشيفين فالصورة



------------------------------------------ Best Wishes: Dr.Ehab Aboueladab, Tel:01007834123 Email:ehab10f@gmail.com,ehababoueladab@yahoo.com ------------------------------------------