Sunday, October 28, 2012

HMG Co A Reductase- reaction catalyzed and significance


HMG Co A reductase- 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA reductase), is an important control site in cholesterol biosynthesis, this enzyme catalyzes the formation of Mevalonate, the committed step in cholesterol biosynthesis. HMG-CoA reductase is an integral membrane protein in the endoplasmic reticulum and spans the membrane. The active site for this enzyme is found on the cytosolic side of the membrane.
The enzyme catalyzes the irreversible step,
 
Regulation of HMG co A reductase/ cholesterol Biosynthesis- HMG CoA reductase is controlled in multiple ways:
This regulation is mediated primarily by changes in the amount and activity of 3-hydroxy-3-methylglutaryl CoA reductase.
A) Regulation of enzyme activity-
1) Feed back inhibition -HMG-CoA reductase in liver is inhibited by Mevalonate, the immediate product of the pathway, and by cholesterol, the main product. The rate of cholesterol formation is highly responsive to the cellular level of cholesterol.
2) Covalent modification Insulin or thyroid hormone increases HMG-CoA reductase activity, whereas glucagon or glucocorticoids decrease it. Activity is reversibly modified by phosphorylation-dephosphorylation mechanisms, some of which may be cAMP-dependent and therefore immediately responsive to glucagon. Phosphorylation decreases the activity of the reductase.  This enzyme, like acetyl CoA carboxylase(which catalyzes the committed step in fatty acid synthesis, is switched off by an AMP-activated protein kinase. Thus, cholesterol synthesis ceases when the ATP level is low. (Insulin causes dephosphorylation, while glucagon causes phosphorylation).
3) Effect of statins-Becausethe enzyme HMG-CoA reductase is the rate-limiting step of cholesterol biosynthesis,this enzyme is the target for many cholesterol lowering drugs. Statins act by inhibiting HMG-CoA reductase and up-regulating LDL receptor activity. Examples currently in use include atorvastatin, simvastatin, fluvastatin, and pravastatin.
B) Regulation of concentration of HMG Co A reductase- The concentration of HMG Co A Reductase is regulated by three main mechanisms-
i)The rate of synthesis of reductase mRNA(Transcription ) – Transcription of  HMG Co A reductase gene is controlled by the sterol regulatory element binding protein (SREBP).
SREBPs are a family of proteins that regulate the transcription of a range of genes involved in the cellular uptake and metabolism of cholesterol and other lipids. This transcription factor binds to a short DNA sequence called the sterol regulatory element(SRE) on the 5’ side of the reductase gene. In its inactive state, the SREBP is anchored to the endoplasmic reticulum or nuclear membrane. When cholesterol levels fall, the protein is released from its association with the membrane by two specific proteolytic cleavages. The released protein migrates to the nucleus and binds the SRE of the HMG-CoA reductase gene, as well as several other genes in the cholesterol biosynthetic pathway, to enhance transcription.Low concentrations of cholesterol increase the level of mRNA for HMG-CoA reductase, whereas high concentrations of cholesterol decrease the mRNA level.
When cholesterol levels rise, the proteolytic release of the SREBP is blocked, and the SREBP in the nucleus is rapidly degraded. These two events halt the transcription of the genes of the cholesterol biosynthetic pathways. It is feed back regulation.Dietary cholesterol also decreases the endogenous cholesterol synthesis. However, it is only hepatic synthesis that is inhibited by dietary cholesterol. .
ii)The rate of translation of reductase mRNA -is inhibited by non sterol metabolites derived from Mevalonate as well as by dietary cholesterol. Reverse occurs when Mevalonate concentration is low, hence translation is enhanced and amount ofHMG Co A reductase is increased.
iii) The degradation of the reductase is stringently controlled. In response to increasing concentrations of sterols such as cholesterol, the enzyme becomes more susceptible to proteolysis. A combination of these three regulatory devices can regulate the amount of enzyme over a 200-fold range.



------------------------------------------ Best Wishes: Dr.Ehab Aboueladab, Tel:01007834123 Email:ehab10f@gmail.com,ehababoueladab@yahoo.com ------------------------------------------

Important disorders of Lipid Metabolism


Sr.no.DiseaseBiochemical DefectInheritanceClinical ManifestationsLab. DiagnosisTreatment
1.Refsum diseaseThere is deficiency of phytanic acid oxidase enzyme.Characterized biochemically by the accumulation of phytanic acid in plasma and tissues.Autosomal recessiveThe disease is characterized by night blindness, loss of smell, deafness, muscle weakness and development of dysmorphic features in children.-Serum total cholesterol, HDL and LDL are moderately reduced. -Blood phytanic acid levels are elevated. -Phytanic oxidase activity estimation in skin fibroblast cultures is diagnostic.Eliminate all sources of chlorophyll from diet.Plasmapheresis is needed to remove Phytanic acid from blood.
2.Zellwegar syndromeZellwegar syndrome is characterized by an individual’s inability to beta-oxidize very-long chain fatty acids in the Peroxisomes of the cell, due to a genetic disorder in one of the several genes involved with peroxisome biogenesis.
Zellwegar syndrome is the most severe of the PBDs(Peroxisome biogenesis Syndrome 
Autosomal RecessiveSymptoms at birth may include a lack of muscle tone, an inability to move and glaucoma.
Other symptoms may includeunusual facial characteristics, mental retardation, seizures, and an inability to suck and/or swallow. Jaundice and gastrointestinal bleeding mayalso occur. More than 90% growth failure.

The abnormallyhigh levels of VLCFA ( Very long chain fatty acids ), are most diagnostic.There is no cure for Zellwegar syndrome, nor is there a standard course of treatment. 
Most treatments are symptomatic and supportive.



------------------------------------------ Best Wishes: Dr.Ehab Aboueladab, Tel:01007834123 Email:ehab10f@gmail.com,ehababoueladab@yahoo.com ------------------------------------------

iPhone 5 vs. Galaxy S III



------------------------------------------Best Wishes: Dr.Ehab Aboueladab, Tel:01007834123 Email:ehab10f@gmail.com,ehababoueladab@yahoo.com ------------------------------------------

iPhone 6 leaked prototype!



------------------------------------------Best Wishes: Dr.Ehab Aboueladab, Tel:01007834123 Email:ehab10f@gmail.com,ehababoueladab@yahoo.com ------------------------------------------

إختراع جديد يذهل العالم ! ! ! مش هاتصدق عينك



------------------------------------------Best Wishes: Dr.Ehab Aboueladab, Tel:01007834123 Email:ehab10f@gmail.com,ehababoueladab@yahoo.com ------------------------------------------

iPhone 5 Exclusive Apple 2012 اعظم اختراع فى العالم



------------------------------------------Best Wishes: Dr.Ehab Aboueladab, Tel:01007834123 Email:ehab10f@gmail.com,ehababoueladab@yahoo.com ------------------------------------------

iPhone 5 Finally it's here!



------------------------------------------Best Wishes: Dr.Ehab Aboueladab, Tel:01007834123 Email:ehab10f@gmail.com,ehababoueladab@yahoo.com ------------------------------------------

Samsung Galaxy S III vs Apple iPhone 4S



------------------------------------------Best Wishes: Dr.Ehab Aboueladab, Tel:01007834123 Email:ehab10f@gmail.com,ehababoueladab@yahoo.com ------------------------------------------

Samsung Galaxy S III vs Samsung Galaxy Note



------------------------------------------Best Wishes: Dr.Ehab Aboueladab, Tel:01007834123 Email:ehab10f@gmail.com,ehababoueladab@yahoo.com ------------------------------------------

Samsung Galaxy S III vs HTC One X



------------------------------------------Best Wishes: Dr.Ehab Aboueladab, Tel:01007834123 Email:ehab10f@gmail.com,ehababoueladab@yahoo.com ------------------------------------------